Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.

نویسندگان

  • Takashi Yokota
  • Shintaro Kinugawa
  • Kagami Hirabayashi
  • Shouji Matsushima
  • Naoki Inoue
  • Yukihiro Ohta
  • Sanae Hamaguchi
  • Mochamad A Sobirin
  • Taisuke Ono
  • Tadashi Suga
  • Satoshi Kuroda
  • Shinya Tanaka
  • Fumio Terasaki
  • Koichi Okita
  • Hiroyuki Tsutsui
چکیده

Insulin resistance or diabetes is associated with limited exercise capacity, which can be caused by the abnormal energy metabolism in skeletal muscle. Oxidative stress is involved in mitochondrial dysfunction in diabetes. We hypothesized that increased oxidative stress could cause mitochondrial dysfunction in skeletal muscle and make contribution to exercise intolerance in diabetes. C57/BL6J mice were fed on normal diet or high fat diet (HFD) for 8 wk to induce obesity with insulin resistance and diabetes. Treadmill tests with expired gas analysis were performed to determine the exercise capacity and whole body oxygen uptake (Vo(2)). The work (vertical distance x body weight) to exhaustion was reduced in the HFD mice by 36%, accompanied by a 16% decrease of peak Vo(2). Mitochondrial ADP-stimulated respiration, electron transport chain complex I and III activities, and mitochondrial content in skeletal muscle were decreased in the HFD mice. Furthermore, superoxide production and NAD(P)H oxidase activity in skeletal muscle were significantly increased in the HFD mice. Intriguingly, the treatment of HFD-fed mice with apocynin [10 mmol/l; an inhibitor of NAD(P)H oxidase activation] improved exercise intolerance and mitochondrial dysfunction in skeletal muscle without affecting glucose metabolism itself. The exercise capacity and mitochondrial function in skeletal muscle were impaired in type 2 diabetes, which might be due to enhanced oxidative stress. Therapies designed to regulate oxidative stress and maintain mitochondrial function could be beneficial to improve the exercise capacity in type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated Mitochondrial Oxidative Stress Impairs Metabolic Adaptations to Exercise in Skeletal Muscle

Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress presen...

متن کامل

Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

NAD(P)H oxidase-induced oxidative stress is at least in part involved with lowered exercise capacity and impaired mitochondrial function in high-fat diet (HFD)-induced diabetic mice. NAD(P)H oxidase can be activated by activation of the renin-angiotensin system. We investigated whether ANG II receptor blocker can improve exercise capacity in diabetic mice. C57BL/6J mice were fed a normal diet (...

متن کامل

Conditional knockout of Mn-SOD targeted to type IIB skeletal muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise capacity.

In vitro studies of isolated skeletal muscle have shown that oxidative stress is limiting with respect to contractile function. Mitochondria are a potential source of muscle function-limiting oxidants. To test the hypothesis that skeletal muscle-specific mitochondrial oxidative stress is sufficient to limit muscle function, we bred mice expressing Cre recombinase driven by the promoter for the ...

متن کامل

Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes.

We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress me...

متن کامل

Angiotensin II-induced reduction in exercise capacity is associated with increased oxidative stress in skeletal muscle.

Angiotensin II (ANG II)-induced oxidative stress has been known to be involved in the pathogenesis of cardiovascular diseases. We have reported that the oxidative stress in skeletal muscle can limit exercise capacity in mice (16). We thus hypothesized that ANG II could impair the skeletal muscle energy metabolism and limit exercise capacity via enhancing oxidative stress. ANG II (50 ng·kg(-1)·m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 297 3  شماره 

صفحات  -

تاریخ انتشار 2009